Synthesis, Electrochemistry, Fluorescence and ECL of Ru (phen) $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$

Peng WANG, Yi YUAN, Guo Yi ZHU*
Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022

Abstract

A new ECL-active species, Ru (phen $)_{2}(\mathrm{dcbpy})\left(\mathrm{PF}_{6}\right)_{2}$, has been designed and synthesized. Its structure was confirmed by means of IR, ESI-MS and 2D NMR. Also, its properties of electrochemistry, fluorescence and ECL are reported, which have suggested a good hope of being used in electrochemiluminescent immunoassay and nucleic acid hybridization.

Keywords: Ru (phen $)_{2}(\mathrm{dcbpy})\left(\mathrm{PF}_{6}\right)_{2}$, electrochemistry, fluorescence, electrochemiluminescence.

Highly luminescent Ru (II), Os (II) and Re (I) metal complexes are a promising class of electrochemiluminescent (ECL) materials ${ }^{1}$. We have designed and synthesized Ru (phen) $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$

The synthetic route is shown as follows, 4, 4-dicarboxylic acid-2, 2-bipyridine (dcbpy) was synthesized by the method put forword by Sprintschnik et al. ${ }^{2}$, except for using $n-\mathrm{Bu}_{4} \mathrm{NCl}$ as phase transfer catalyst to further improve the product. The synthesis

of cis- Ru (1,10-phenanthroline) Cl_{2} (phen=1,10-phenanthroline) is the modi-fication to that of cis-Ru ($2,2^{\prime}$-bipyridine) $\mathrm{Cl}_{2}{ }^{3}$. The title compound was obtained with cis-Ru (phen) $)_{2} \mathrm{Cl}_{2}$ and dcbpy refluxed in water-methanol solution.

The orange title compound is confirmed by IR, ESI-MS and 2D NMR. IR ($v_{\max } /$ $\left.\mathrm{cm}^{-1}\right): 1726(\mathrm{C}=\mathrm{O})$. ESI-MS $(\mathrm{m} / \mathrm{z}): 1011\left(\mathrm{M}^{+}\right), 866\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}\right), 721\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{+}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO, δ_{H}): $9.34(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 8.76(2 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 8.87(2 \mathrm{H}, \mathrm{d}, 7-\mathrm{H}), 8.53$ (2H, d, $5-\mathrm{H}), 8.49(2 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}), 8.38(2 \mathrm{H}, \mathrm{d}, 2-\mathrm{H}), 8.03(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$ and $9-\mathrm{H}), 7.97(2 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$, $7.84\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}\right.$ and $\left.8-\mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO, $\left.\delta_{\mathrm{C}}\right): 165.16\left(7^{\prime}-\mathrm{C}\right), 157.61\left(2^{\prime}-\mathrm{C}\right), 153.00$
(2-C), 152.65 (6 -C), 152.38 ($9-\mathrm{C}$), 147.06 ($11-\mathrm{C}$), 146.73 ($13-\mathrm{C}$), 140.85 (4-С), 137.28
(4-C), 137.18 (7-C), 130.63 (10-C), 130.55 (12-C), 128.18 (5-C), 128.14 (6-C), 126.75
($\left.5^{\prime}-\mathrm{C}\right), 126.53$ (3-C), 126.49 ($8-\mathrm{C}$), 123.77 (3'-C).
Figure 1 shows typical cyclic voltammogram for $10^{-3} \mathrm{~mol} / \mathrm{L}$ title compound in $\mathrm{MeCN} / 0.05 \mathrm{~mol} / \mathrm{L}(\mathrm{TBA}) \mathrm{ClO}_{4}$ at a scan rate of $100 \mathrm{mV} / \mathrm{s}$. The fluorescence spectrum of Ru (phen $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$ saturated aqueous solution at $25{ }^{\circ} \mathrm{C}$ is shown in Figure 2.

Figure 1. Cyclic voltammogram

Figure 2. Fluorescence spectrum.

Many studies ${ }^{4}$ have indicated that the ECL spectrum of each Ru (II) complex is very similar to its fluorescence spectrum, so we only report the fluorescence spectrum of Ru (phen) $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$ here. ECL experiments were taken on self-made ECL instrument with a working electrode of gold whose area is $2 \mathrm{~cm}^{2}$ in aqueous solutions of $0.1 \mathrm{~mol} / \mathrm{L}$ tri-n-propylamine and variable concentrations of Ru (phen) $)_{2}(\mathrm{dcbpy})\left(\mathrm{PF}_{6}\right)_{2}$, and the ECL intensity data are shown in Table 1.

Table 1. ECL intensity of different Ru (phen) $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$ concentrations.

Concentration $\left(10^{-6} \mathrm{~mol} / \mathrm{L}\right)$	0	50	100	150	200	400	800	1000
ECL Intensity (Arbitrary Unit)	4	60	114	167	226	452	896	1114

The studies of using Ru (phen) $)_{2}$ (dcbpy) $\left(\mathrm{PF}_{6}\right)_{2}$ as probe in electrochemiluminescent immunoassay assay and nucleic hybridization are presently in progress.

Acknowledgment

This projiect is supported by the Department of Science and Technology of China.

References

1. J. M. Price, W. Xu and J. N. Demas. Anal. Chem., 1998, 70, 265.
2. G. Sprintschnik, H. W. Sprintschnik, and P. P. kirsch. J. Am. Chem. Soc., 1977, 99, 4947.
3. M. J. Cook, A. P. Lewis, and G. S. G. McAuliffe. J. Chem. Soc. Perkin. Trans. II, 1984, 1293.
4. X. H. Xu, K. Schreder, B. L. Iverson and A. J. Bard. J. Am. Chem. Soc., 1996, 118, 3656.
5. M. M. Richter, A. J. Bard, and W. Kim. Anal. Chem., 1998, 70, 310.

Received 22 September 1998

